Neural Network Processing for Multiset Data

نویسنده

  • Simon McGregor
چکیده

This paper introduces the notion of the variadic neural network (VNN). The inputs to a variadic network are an arbitrary-length list of n-tuples of real numbers, where n is fixed. In contrast to a recurrent network which processes a list sequentially, typically being affected more by more recent list elements, a variadic network processes the list simultaneously and is affected equally by all list elements. Formally speaking, the network can be seen as instantiating a function on a multiset along with a member of that multiset. I describe a simple implementation of a variadic network architecture, the multi-layer variadic perceptron (MLVP), and present experimental results showing that such a network can learn various variadic functions by back-propagation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Curl Size and Pelt Color Determination of Zandi Lambs Using Image Processing and Artificial Neural Network

In this study, a method based on using image processing and artificial neural network is introduced to determine pelt color and curl size of newborn lambs in Zandi sheep. The data was collected from 300 newborn lambs reared in the Zandi sheep breeding centre of Khojir, Tehran. Primarily, curl size and pelt color of new born lambs was recorded by experienced appraisers, and at the same time, sev...

متن کامل

Estimation of the mean grain size of mechanically induced Hydroxyapatite based bioceramics via artificial neural network

This study focuses on the estimation of the mean grain size of mechanically induced Hydroxyapatite (HA) through the artificial neural network (ANN) model. The mean grain size of HA and HA based nanocomposites at different milling parameters were obtained from previous studies. The data were trained and tested by the neural network modeling. Accordingly, all data (55 sets) were based on the mecha...

متن کامل

Predicting the Hydrate Formation Temperature by a New Correlation and Neural Network

Gas hydrates are a costly problem when they plug oil and gas pipelines. The best way to determine the HFT and pressure is to measure these conditions experimentally for every gas system. Since this is not practical in terms of time and money, correlations are the other alternative tools. There are a small number of correlations for specific gravity method to predict the hydrate formation. As th...

متن کامل

Application of statistical techniques and artificial neural network to estimate force from sEMG signals

This paper presents an application of design of experiments techniques to determine the optimized parameters of artificial neural network (ANN), which are used to estimate force from Electromyogram (sEMG) signals. The accuracy of ANN model is highly dependent on the network parameters settings. There are plenty of algorithms that are used to obtain the optimal ANN setting. However, to the best ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007